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A stress-based least-squares finite-element model for
incompressible Navier–Stokes equations
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SUMMARY

In this paper we present a stress-based least-squares finite-element formulation for the solution of the
Navier–Stokes equations governing flows of viscous incompressible fluids. Stress components are intro-
duced as independent variables to make the system first order. Continuity equation becomes an algebraic
equation and is eliminated from the system with suitable modifications. The h and p convergence are
verified using the exact solution of Kovasznay flow. Steady flow past a large circular cylinder in a channel
is solved to test mass conservation. Transient flow over a backward-facing step problem is solved on
several meshes. Results are compared with that obtained using vorticity-based first-order formulation for
both benchmark problems. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past few years finite-element models based on least-squares variational principles have
drawn considerable attention for the solution of Stokes and Navier–Stokes equations [1–7]. Least-
squares-based finite-element formulations offer several theoretical and computational advantages.
Most notably, such formulations circumvent the inf–sup condition of Ladyzhenskaya–Babuska–
Brezzi (LBB). As a result equal-order interpolation functions can be used for all field variables.
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They also yield symmetric positive-definite (SPD) coefficient matrix and therefore robust iterative
solvers can be used to solve resulting system of algebraic equations.

Vorticity-based least-squares formulation is the most popular first-order formulation for the
solution of Stokes and Navier–Stokes equations since only one additional independent vari-
able is introduced in two dimensions compared to three in stress-based formulation and four
in velocity–flux formulation. In this paper, we present a stress-based least-squares finite-element
formulation that carries five independent variables. In the proposed formulation, continuity equa-
tion becomes an algebraic equation and is eliminated from the system of governing equations
with suitable modifications. We expect better pressure–velocity coupling in the present formu-
lation compared to previous formulations which retain continuity equation. It has been shown
by Pontaza [8] that pressure and velocities are not coupled strongly in previous least-squares
formulations.

Bochev and Gunzburger [9] studied stress-based first-order system for the incompressible Stokes
equations but retained continuity equation. They analysed weighted (mesh-dependent weights) as
well as the unweighted L2 least-squares functional. They showed that weighted least-squares
formulation converges faster but suffers from the problem of bad conditioning of the coefficient
matrix. They tested the formulation with several model problems. However, no detailed numerical
results were reported.

Previous studies [10, 11] showed that mass conservation is not very good in least-squares-
based formulations. Chang and Nelson [10] suggested that this is because the error is mini-
mized on a global scale, allowing errors of significant size to remain on a local scale, espe-
cially in areas in which the gradients of the variables are of significant size. They also pro-
posed a remedy. Unfortunately, this remedy, which consists of enforcing the continuity equation
as an explicit constraint through the use of Lagrange multipliers, negates one of the main ad-
vantages of the least-squares methods, namely, the positive-definiteness of resulting coefficient
matrix. Deang and Gunzburger [12] also studied mass conservation in least-squares formulations
and analysed weighted least-squares functionals. These formulations have better mass conserva-
tion than un-weighted formulations but conditioning number of the resultant coefficient matrix
becomes high. Bolton and Thatcher also addressed this problem for Stokes [11] and Navier–
Stokes equations [13] and proposed weighting of particular terms in the least-squares functional.
Pontaza and Reddy [5, 6] used high-order basis functions and they did not observe problems
with mass conservation. However, for unsteady backward-facing problem numerical solutions
become unstable if sufficiently high p-level was not used. In this study we pay particular at-
tention to mass conservation and solve problems on relatively coarse meshes to check mass
conservation. We examine mesh dependence of the solution for transient backward-facing step
problem.

The paper is organized as follows. In Section 2, the stress-based least-squares finite-element
model for the steady incompressible Navier–Stokes equations is presented. Numerical results are
presented in Section 3. The h and p convergence are verified using the exact solution of the
Kovasznay flow problem. First we present results for two-dimensional flow past a large circular
cylinder in a channel. We check the dependence of mass conservation on mesh size. Next, numerical
results are presented for the transient two-dimensional flow over a backward-facing step. We run
the simulation for various meshes and report evolution of velocity field with time. We compare
these results with the results obtained using traditional vorticity–pressure formulation. We conclude
the paper with some remarks.
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2. THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Notation
Let � denote an open-bounded domain in Rn , n = 2 or 3, having a sufficiently smooth boundary �.
Throughout this paper, vectors will be denoted by boldface letters, e.g. u, and tensors by underlined
boldface capitals, e.g. T. We use the standard notation and definition for the Sobolev spaces H s(�)

and H s(�), s�0, with corresponding inner products denoted by (·, ·)s,� and (·, ·)s,�. By Hs(�)

we denote the product space [H s(�)]n; and H1
0 (�) denotes the space of functions from H1(�)

that vanish on the boundary �.

The steady incompressible Navier–Stokes equations in dimensionless form can be written as

∇ · u= 0 in � (1)

(u · ∇)u + ∇ p − 1

Re
∇ · [(∇u) + (∇u)T] = f in � (2)

u=us on �u (3)

n̂ · r= f s on �f (4)

where u(x) is the velocity vector, r=−pI + 1/Re[(∇u) + (∇u)T] is the total stress, p(x) is the
pressure, f is a dimensionless force, n̂ is the outward unit normal on the boundary of �, us is the
prescribed velocity on the boundary �u, and f s are the prescribed tractions on the boundary �f,
� =�u ∪�f and �u ∩�f = ∅, and Re is the Reynolds number.

2.1. The stress-based first-order system

To define the first-order velocity–pressure–stress system, ‘scaled’ stress tensor (symmetric part of
velocity gradient tensor) is introduced

T=[(∇u) + (∇u)T] (5)

Then Equations (1)–(4) can be replaced by an equivalent system of first-order equations. The
problem now can be stated as one of finding the velocity vector u(x), pressure p(x) and stress
tensor T(x) such that

∇ · u= 0 in � (6)

(u · ∇)u + ∇ p − 1

Re
∇ · T= f in � (7)

T − [(∇u) + (∇u)T] = 0 in � (8)

u=us on �u (9)

n̂ · T=Ts on �T (10)

In component form these equations can be written as

�u
�x

+ �v

�y
= 0 in � (11)
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u
�u
�x

+ v
�u
�y

+ �p
�x

− 1

Re

[
�Txx
�x

+ �Txy
�y

]
= 0 in � (12)

u
�v

�x
+ v

�v

�y
+ �p

�y
− 1

Re

[
�Txy
�x

+ �Tyy
�y

]
= 0 in � (13)

Txx − 2
�u
�x

= 0 in � (14)

Txy − �u
�y

− �v

�x
= 0 in � (15)

Tyy − 2
�v

�y
= 0 in � (16)

u=us on �u (17)

n̂ · T=Ts on �T (18)

Continuity equation can be written as

�u
�x

+ �v

�y
= 0 in � (19)

⇒ Txx =−Tyy in � (20)

Continuity equation is eliminated and Tyy is replaced by −Txx in the system of governing equations.
Then Navier–Stokes and continuity equations can be replaced by an equivalent system of first-order
equations. The problem now can be stated as one of finding the velocity vector u(x) pressure p(x)
and stress tensor components Txx , Txy such that

u
�u
�x

+ v
�u
�y

+ �p
�x

− 1

Re

[
�Txx
�x

+ �Txy
�y

]
= 0 in � (21)

u
�v

�x
+ v

�v

�y
+ �p

�y
− 1

Re

[
�Txy
�x

− �Txx
�y

]
= 0 in � (22)

Txx − 2
�u
�x

= 0 in � (23)

Txy − �u
�y

− �v

�x
= 0 in � (24)

−Txx − 2
�v

�y
= 0 in � (25)

u=us on �u (26)

n̂ · T=Ts on �T (27)
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Figure 1. Convergence of the least-squares functional, velocity, pressure and stress field to
the exact Kovasznay solution: p-convergence.

2.1.1. L2 least-squares formulation. The least-squares functional of the problem can be set up by
summing up the squares of the residual of the new set of equations

J(u, p, Txx , Txy; f) = 1
2 (‖R1‖20 + ‖R2‖20 + ‖R3‖20 + ‖R4‖20 + ‖R5‖20) (28)

where R1–R5 are the residuals of Equations (21)–(25).
Considering the homogeneous pure velocity boundary condition case, the least-squares principle

for functional (28) can be stated as:
find the velocity vector u(x), pressure p(x) and stress components Txx and Txy such that

J(u, p, Txx , Txy; f)�J(ũ, p̃, ˜Txx , ˜Txy; f) ∀(ũ, p̃, ˜Txx , ˜Txy) ∈X (29)

where we use the space

X={(u, p, Txx , Txy) ∈H1
0(�) × H1(�) ∩ L̄2(�) × H1(�) × H1(�)}

The variational problem and finite-element model are constructed in conventional way, details of
which can be found in [5].

We use space–time decoupled formulation where discretizations in space and time are done
independently. The Crank–Nicholson scheme is used for time approximation.
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Figure 2. Convergence of the least-squares functional, velocity, pressure, and stress field to
the exact Kovasznay solution: h-convergence.

2.1.2. Expansion bases. There is no compatibility condition, such as LBB condition, in this
formulation, so all the variables are approximated using the same interpolation functions. We use
low-order basis functions (bilinear Lagrange basis functions) in this study, except when we verify
h and p convergence, we use high-order nodal expansion.

Nodal expansion
In the standard interval �st ={�| − 1<�<1} nodal expansions are defined as

�i (�) = (� − 1)(� + 1)L ′
p(�)

p(p + 1)L p(�i )(� − �i )
(30)

In Equation (30), L p = P0,0
p is the Legendre polynomial of order p and �i denotes the location

of the roots of (� − 1)(� + 1)L ′
p(�) = 0 in the interval [−1, 1]. Details on the multidimensional

construction of nodal expansions can be found in Reference [14].

The integrals are evaluated using Gauss quadrature rules. In the computer implementation,
one point Gauss quadrature is used for bilinear Lagrange basis functions and Gauss–Lobatto–
Legendre rule is used for high-order basis functions. For details on standard finite-element computer
implementation, such as mapping �̄e � �̂e, numerical integration in �̂e, and assembly using the
direct stiffness approach, see Reddy [15, 16]. For linearization, we use Newton’s method, details
of which can be found in [17].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1369–1385
DOI: 10.1002/fld



STRESS-BASED LEAST-SQUARES FINITE-ELEMENT MODEL 1375

-1 0 1

-1

0

1

Y

X

A

B

Figure 3. Close-up view of the geometric discretization around the cylinder.

2.2. Implementation of boundary conditions

In general, in a given problem we have boundary conditions on the primary variables and/or
secondary (force) variables. Boundary conditions on the primary variables can be implemented
easily in the strong sense by restricting the value of corresponding degree of freedom.

Boundary conditions on the secondary variables (typically, they involve derivatives of the pri-
mary variables) are imposed in a weak sense through the least-squares functional. For example, the
outflow boundary condition, n̂·r̃= n̂·(−pI+(1/Re)∇u) = 0 which is equivalent to (at x = constant
boundary)

−p + 1

2Re
Txx = 0 (31)

and

1

Re

�v

�x
= 0 (32)

is implemented by modifying the L2 least-squares functional to be

J(u, p, Txx , Txy; f) = 1

2

(
‖R1‖20 + ‖R2‖20 + ‖R3‖20 + ‖R4‖20 + ‖R5‖20

+
∥∥∥∥−p + 1

2Re
Txx

∥∥∥∥
2

0,�outflow

+
∥∥∥∥ 1

Re

�v

�x

∥∥∥∥
2

0,�outflow

)
(33)
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Figure 4. Flow past a large circular in a channel: (a) streamlines and (b) u-velocity contours.

3. NUMERICAL RESULTS

In this section, numerical results obtained with the present least-squares finite-element model
are presented. First, h and p convergence of the proposed formulation are verified. Next, re-
sults are presented for steady flow past a circular cylinder and transient flow over a backward-
facing step.

For all the problems considered in this paper, non-linear convergence is declared when the rela-
tive norm of the residual, ‖�U‖/‖U‖ is less than 10−3 unless mentioned, where U is the solution
vector (includes all degrees of freedom at a node). Convergence of conjugate gradient is declared
when L2-norm of error is less than 10−6. In this study we use Jacobi preconditioner as only
diagonal entries of coefficient matrix are needed to be stored as opposed to other preconditioners
which require partial or full coefficient matrix.
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Figure 5. (a) Variation of u-velocity along AB and (b) variation of v-velocity along AB (for Mesh 1).

3.1. Verification problem: Kovasznay flow

The benchmark problem to be used for the purpose of verification of the least-squares-based finite-
element model is an analytical solution to the two-dimensional steady incompressible Navier–
Stokes due to Kovasznay [18]. Domain of interest is �̄=[−0.5, 1.5]× [−0.5, 1.5]. The solution
is given by

u = 1 − e�x cos(2�y) (34)
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Figure 6. (a) Variation of u-velocity along AB and (b) variation of v-velocity along AB (for Mesh 2).

v = �

2�
e�x sin(2�y) (35)

p= p0 − 1
2e

2�x (36)

where � =Re/2 − [(Re2/4) + 4�2]1/2 and p0 is a reference pressure (an arbitrary constant).
Dirichlet boundary conditions on velocities are specified using the exact solution given by

Equations (34) and (35). The discrete system is linearized using Newton’s method, and resulting
SPD system of equations has been solved using PCG solver. Newton’s convergence is declared
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Figure 7. Time history of streamline plots for low over a backward-facing step.

when the relative norm of the residual is less than 10−10. Convergence of conjugate gradient is
declared when L2-norm of error is less than 10−10.

An 8× 8 uniform mesh is used. To verify spectral convergence (p-convergence), L2-norm of
least-square functional J and L2 error of the velocity, pressure and stress fields are plotted against
polynomial order in Figure 1. On logarithmic linear scale we obtain almost straight line for all the
variables verifying exponential decay with respect to the polynomial degree used.
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Figure 8. Horizontal velocity profile along the height of the channel at: (a) x = 7 and (b) x = 15: Mesh A.

Next, we perform an h-refinement study. For such a study, we fix the p-level of the element
approximation functions (P = 3), and systematically refine the mesh. The error measures should
decay at an algebraic rate as the mesh is refined. On a log–log scale it should be a straight line.
Five different uniform meshes are used to perform the h-refinement study. The meshes are varied
successively from 6× 6 to 20× 20. In Figure 2 L2-norm of least-square functional J and L2
error of the velocity, pressure and stress fields are plotted against h. An algebraic convergence rate
slightly better than 4 is achieved by u, v and Txy and slightly better than 3 is achieved by p, Txx
and L2-norm of least-squares functional.
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Figure 9. Time history of the v-velocity component at two selected locations: Mesh A.

3.2. Flow past a large circular cylinder in a channel

To test mass conservation rigorously, we solve flow past a large circular cylinder in a channel
with blockage ratio of 2 (H/D = 2). Chang and Nelson [10] used similar problem to test mass
conservation for Stokes flow. Domain of interest is [−10.0, 15.0]× [−1.0, 1.0]. Cylinder has unit
diameter and it is centred at (0.0, 0.0). No-slip boundary conditions are imposed on side walls. At
inlet boundary conditions are u = 1.0 and v = 0.0. The outflow boundary conditions are imposed
in a weak sense through the least-squares functional. Reynolds number considered here is 40 for
which steady-state solution exists.

Figure 3 contains a close-up view of the geometric discretization around the circular cylinder.
We use quadrilateral elements. There are 1824 elements in the mesh and 1938 nodes (Mesh 1).
Figure 4(a) shows streamline plot. In this case separation delayed. u-velocity contours around the
cylinder are shown in Figure 4(b). The predicted wake extends 1.68 cylinder radius measured from
the back of the cylinder.

Next, u- and v-velocities are plotted along line AB (see Figure 3) for both stress-based and
vorticity-based formulations. Present results are compared with the results of Prabhakar and
Reddy [7] who solved the same problem using spectral/hp penalty least-squares formulation.
Results in [7] are expected to be accurate to a good extent. Present results match well with the
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Figure 10. Time history of the v-velocity component at two selected locations: Mesh B.

results of Prabhakar and Reddy [7]. Mass flow rate at x = 0 is calculated and found to be 1.98 for
stress-based and vorticity-based formulations (Figure 5).

Next we coarsen the mesh. We generate a similar mesh shown in Figure 3 with 720 elements and
802 nodes (Mesh 2); u and v-velocities are plotted along line AB (see Figure 6) and compared with
the results obtained with hp penalty least-squares formulation. While u-velocity profile matches
to a good extent, v-velocities are significantly off. On coarse mesh both formulations produce
‘equally inaccurate’ results.

3.3. Transient flow over a backward-facing step

Next, we consider two-dimensional transient flow over a backward-facing step at Re= 800. The
domain of interest is �̄ =[0, 30] × [−0.5, 0.5]. The boundary and initial conditions used here are
those used in the work of Gresho et al. [19] and Pontaza and Reddy [6]: u = v = 0 on the horizontal
walls, −p + ��u/�n = 0 and �v/�n = 0 on the outflow boundary, and u = [tanh(t/4)]ub(y) +
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Figure 11. Time history of the v-velocity component at two selected locations: Mesh C.

[1 − tanh(t/4)]u p(y) and v = 0 on the inflow boundary. Here ub(y)= max[0, 24y(0.5 − y)] is
the true inlet boundary condition and u p(y)= 3(0.5− y)(0.5+ y) is the Poiseuille flow observed
infinitely far downstream at steady flow conditions. The initial velocity field is set to u = u p(y)
and v = 0 everywhere in the computational domain. The inlet condition is varied fast but smoothly
from Poiseuille flow to flow over a backward-facing step.

A 150× 50 mesh has been used. Along the x direction, there are 90 uniform elements till
x = 15 and 60 uniform elements from x = 15 to x = 30. Mesh is uniform in the y direction. The
Crank–Nicholson scheme is used for time marching, and a time increment of �t = 0.2 has been
used for all the results reported in this section.

Figure 7 shows the evolution of the flow field. The main flow coming from the inlet follows
a sinuous path, forming a series of eddies along the upper and lower walls. At steady state, two
eddies (primary and secondary separation zones) remain, all other eddies die out. These plots
match qualitatively well with the published result of Pontaza and Reddy [6]. In the steady state,
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the primary reattachment length is around 6.10, while secondary separation and reattachment
lengths are approximately 4.9 and 10.4, respectively. These values match well with the benchmark
results [20]. The u-velocity profiles along the channel height at x = 7 and 15 are compared with
the benchmark results of Gartling [20] in Figure 8 (steady-state profile). Excellent agreement is
found. This problem is also solved using vorticity-based first-order least-squares finite-element
method under the same conditions. Figure 9 shows the time history of the v-velocity component
at two locations along the channel’s mid-section for stress-based and vorticity-based first-order
formulations. Both formulations predict same velocity evolution. There are no fluctuations in
v-velocity signal showing that mesh resolution is adequate.

Previous work of Gresho et al. [19], Torczynski [21] and Pontaza and Reddy [6] showed that
lack of spatial resolution induces unrealistic temporal chaotic behaviour resulting in an erroneous
prediction of the long-term behaviour of the flow. In such cases either simulation diverges or the
velocities fluctuate with time if it converges to steady state [6]. We coarsen the mesh and solve
this problem on 60× 20 (40+20 in the x direction) and 40× 16 mesh (25+15 in the x direction).
These meshes are uniform in the y direction. Figure 10 shows time history of v-velocity at
two locations for both stress-based and vorticity-based formulations for 60× 20 mesh. Stress-
based formulation does not show much sensitivity towards mesh coarsening and for 60× 20 grid
results are close to that for 150× 50. Vorticity-based formulation shows pronounced fluctuation in
v-velocity. However, simulation does not diverge.

On 40× 16 mesh, v-velocity evolutions are the same for both the formulations but significantly
off from accurate results on 150× 50 mesh (Figure 11). Steady state is achieved in these simulations.

4. CONCLUDING REMARKS

In this paper we presented a stress-based least-squares finite-element formulation for the solution
of incompressible Navier–Stokes equations. Stress components were introduced as independent
variables to make the system first order. Continuity equation became an algebraic equation and
was eliminated from the system with suitable modifications. This formulation carries one less
degree of freedom compared to existing stress-based first-order formulations [9]. The h and p
convergence were verified using the exact solution of Kovasznay flow. Steady flow past a large
circular cylinder in a channel is solved to check mass conservation and we found good mass
conservation. Transient flow over a backward-facing problem was solved on three different meshes
and accuracy was investigated. We compared results obtained by proposed formulation with that
obtained by vorticity-based formulation and found that proposed formulation was less affected
with mesh coarsening.
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